Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats
نویسندگان
چکیده
In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.
منابع مشابه
Healing of rat femoral segmental defect with bone morphogenetic protein-2: a dose response study.
OBJECTIVE Use of recombinant human bone morphogenetic protein-2 (rhBMP-2) is becoming a common clinical approach to enhance bone repair. There is little or no information in the literature on the dose of rhBMP-2 required for effective healing of critical-sized defects such as those associated with trauma. In this study, we used a segmental defect model to assess the dose response of rhBMP-2 usi...
متن کاملEvaluation of the effects of autologous adipose derived mesenchymal stem cells in combination with polyacrylamide hydrogel and nanohydroxyapatite scaffolds on healing in rabbit critical-sized radial bone defect model
Objective: In this study, the bone regeneration ability of polyacrylamide hydrogel and nanohydroxyapatite scaffolds (PAAH/NHA) and stem cells derived from adipose tissue (ADSCs) in the healing of critical sized bone defects in rabbit radius were assessed. Animals and procedures: 12 New Zealand white male rabbits were divided into 3 groups. The rabbits were anesthetized and 15 mm bone def...
متن کاملEffects of chitosan scaffold along with royal jelly or bee venom in regeneration of critical sized radial bone defect in rat
The aim of this study was to compare the efficacy of honey bee venom (BV) and royal jelly (RJ) alongside chitosan scaffold (CS) in improving radius bone defect in rats. A total of 60 full thickness radial bone defects with a length of 5 mm were created in 60 male Wistar rats. Six healthy radial bones (3 rats) were also assigned as normal control for biom...
متن کاملImproved healing of large segmental defects in the rat femur by reverse dynamization in the presence of bone morphogenetic protein-2.
BACKGROUND Large segmental defects in bone do not heal well and present clinical challenges. This study investigated modulation of the mechanical environment as a means of improving bone healing in the presence of bone morphogenetic protein (BMP)-2. Although the influence of mechanical forces on the healing of fractures is well established, no previous studies, to our knowledge, have described ...
متن کاملRecombinant human bone morphogenetic protein-2 and collagen for bone regeneration.
The study reported describes a combination of recombinant human bone morphogenetic protein-2 (rhBMP-2) and collagen (C) to regenerate bone. Unilateral critical-sized defects (CSDs) were prepared in radii of 32 skeletally mature New Zealand white rabbits. Rabbits were divided evenly among four treatments: autograft, absorbable C (Helistat), 35 microg of rhBMP-2 combined with absorbable C (rhBMP-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2017